Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170916, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350563

RESUMO

Biochar with adjustable redox activity is an effective strategy for immobilization of excess arsenic (As(III)) contaminated soil. However, biochar exhibits limitations in terms of electron transfer efficiency and immobilization efficiency due to insufficient activation energy. In this study, As(III) in the soil was rapidly immobilized by adding magnetic biochar (Fe-BC) and introducing microwave irradiation energy to enhance electron transport efficiency. The results showed that the pore structure and iron species (ZVI, Fe3O4) loaded onto the biochar could be modulated by controlling the temperature and time of microwave pyrolysis, which enhanced the microwave absorption capacity and the immobilization performance of As. After adding Fe-BC (10 wt%) and treating with microwave irradiation for 3 h, the content of As(III) in the soil was reduced to 54.56 %. Compared with the conventional heating treatment, the percentage of stabilized As (residual form) increased by 11.21 %. The localized hot spots formed through the absorption of microwave energy by biochar promote the formation of arsenic-containing mineral crystals (FeAsO4 and Fe3AsO7), thus enhancing the immobilization efficiency. In addition, microwave-induced electron transfer facilitated the oxidation of As(III) to As(V) by surface quinone and carbonyl groups on the Fe-BC. Density functional theory calculation further proved that the surface groups of the Fe-BC had a stronger electron-withdrawing ability under microwave irradiation, thereby promoting the adsorption and immobilization of As(III). This work provided a new perspective on the technology of rapid remediation of heavy metals contaminated soil using biochar.

2.
J Hazard Mater ; 457: 131690, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257382

RESUMO

Higher chlorine (Cl) content than lead (Pb) content in municipal solid waste incineration fly ash (MSWIFA) impeded the practical application of Pb5(PO4)3Cl-derived magnesium potassium phosphate cement (MKPC) preparation strategy. Herein, Pb/Ca-rich lead slag (LS) was co-blended with MSWIFA to prepare MKPC for the synergistic treatment of both two solid wastes and the Pb-Cl solidification. The results showed that the resulting 15-15 (15 wt% MSWIFA and 15 wt% LS incorporation) sample achieved 25.44 MPa compressive strength, and Pb and Cl leaching toxicity was reduced by 99.18 % and 92.80 %, respectively. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses showed that Pb2+, Ca2+, phosphate and Cl- formed PbxCa5-x(PO4)3Cl in samples. The formation of PbxCa5-x(PO4)3Cl was also demonstrated by the high-angle annular dark field scanning transmission electron microscope (HAADF-STEM), while differences in the lattice characteristics of PbxCa5-x(PO4)3Cl and Pb5(PO4)3Cl were found. In-situ XRD indicated that Ca2+ accelerated the transformation of Pb2+ to Pb5(PO4)3Cl. After co-precipitating with Ca2+ to form PbxCa5-x(PO4)3Cl, Pb2+ continuously substituted Ca2+ to eventually transform to Pb5(PO4)3Cl. This work informs the synergistic treatment of MSWIFA and LS and offers new insights into the reaction mechanism between Pb2+, phosphate and Cl- under Ca2+ induction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...